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Abstract

This report describes the integration of new solid and interface-cohesive mechanics systems
into MOOSE. The purpose of these new systems is to support the ability of MOOSE to
run full-field crystal plasticity finite element method simulations of key material processes
in high temperature metallic materials. These simulations could be used to help accurately
predict the performance of key high temperature structural materials in future advanced
nuclear reactor components. Previous work implemented preliminary versions of many of
these systems in MOOSE Apps. The current work reports on their integration into the
main MOOSE tensor mechanics module along with associated improvements to the basic
formulations and numerical implementations. Finally, the report provides an example of
the full-field crystal plasticity simulations now possible in MOOSE, including examples of
realistic geometries requiring millions of degrees of freedom to resolve the microstructural
features and macroscale geometry.
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1 Introduction

1.1 Purpose

This report describes the integration of new solid mechanics and interface mechanics systems
into the MOOSE Tensor Mechanics module, aimed at providing a capability to simulate
large-scale, finite deformation, crystal plasticity finite element simulations. Figure 1.1 shows
an example simulation of this type.

Previous research at ANL developed the basic capabilities to perform simulations of this
kind in a separate MOOSE app called DEER [1]. These simulations consist of three main
modules

1. A solid mechanics formations with the correct large-deformation Jacobian for represent
grain bulk deformation.

2. A large deformation interface-cohesive formulation for representing creep cavitation on
grain boundaries.

3. A homogenization constraint system for imposing cell average stress or strain con-
straints to determine effective macroscale mechanical properties.

Past work at ANL developed the theory behind these modules [1–6]. The main objec-
tive of this develop work was to improve the underlying implementations and integrate the
system into the mainline MOOSE. However, in the process of integrating the modules the
development of several significant, new systems was required:

• A framework for maintaining both updated and total Lagrangian mechanics kernels.

• A new material system, aimed at making the task of implementing a new constitutive
model into MOOSE much easier.

• Stabilization for linear hex and quad elements for nearly-incompressible problems.

• Improvements to the interface-cohesive modeling framework both to improve its nu-
merical performance and to better integrate it into the tensor mechanics module.

1.2 Organization

Chapter 2 describes the new solid mechanics system integrated into MOOSE, including a
description of the theory behind the basic formulation, the material system, the stabilization
system, and the homogenization subsystem. Chapter 3 provides similar background for the
large deformation interface-cohesive modeling system. Chapter 4 them demonstrates the new
capabilities by summarizing work on full-scale, massively-parallel Crystal Plasticity Finite
Element Method (CPFEM) simulations of cyclic creep-fatigue loading of metallic materials.
The final chapter then discusses future work on the new mechanics systems and on full-scale
CPFEM simulations in MOOSE.

ANL-21/33 1
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Figure 1.1: Mesh for a full-field simulation of a cylindrical test section. The model represents
deformation and failure in the grain bulk with crystal plasticity and deformation and failure
on the grain boundaries with an interface-cohesive model. The entire simulation runs in
MOOSE using large deformation kinematics to track geometrical effects caused by grain
rotations and the eventual large deformations and necking in the sample. This example
model has about 1.5 million quadratic tetrahedral elements.
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2 New Solid Mechanics Kernels and Material System

This chapter addresses the first objective detailed in Chapter 1: transfer ANL work on the
solid mechanics formulation in MOOSE to the mainline MOOSE framework (in the Tensor
Mechanics module). This work ended up requiring a significant amount of additional devel-
opment effort to support more general use of the kernels, material system, homogenization
system, and ancillary objects. The new kernel system includes:

1. Both total and updated Lagrangian formulations of the stress equilibrium residual for
large deformation problems.

2. A comprehensive new material system for the kernels, which allows the user to imple-
ment models using any convenient stress and strain measures, automatically converting
from the user-provided stress and algorithmic tangent measures to the measures re-
quired by the kernel formulations.

3. F̄ stabilization for nearly incompressible problems using linear hex or quad elements.

4. A complete transfer of a system for imposing cell-volume-average homogenization con-
straints from the ANL DEER application into mainline MOOSE. This included modi-
fications to ensure the system works with the new stabilization and material systems.

While MOOSE already has a large deformation solid mechanics kernel, these kernels do
not have the correct Jacobian for large deformations or for stabilized problems using linear
elements. This significantly reduces the nonlinear convergence rate of large deformation
problems, making these simulations substantially more computationally expensive than they
need to be. The overall goal of the present work is to provide a large deformation solid
mechanics system with the correct, exact Jacobian.

A previous ANL technical report [1] outlines much of the theory underlying these mod-
ifications. The following chapter summarizes the important aspects of new solid mechanics
system, focusing on the new elements not described our previous report. The descriptions
here also serve as the basis of the MOOSE documentation supporting the new mechanics
system.

2.1 Solid mechanical kernel formulation

The new kernel system provides two options for enforcing stress equilibrium over a domain
described by a map between the reference configuration of the body, defined as Ω0 with
coordinates X, and the current configuration of the body defined as Ω with coordinates x.
The mathematics here use upper case letters to define quantities related to the reference
configuration and lower case letters to define quantities related to the current configuration.
Specifically,

fi,j =
∂fi
∂xj

(2.1)

denotes a spatial gradient with respect to the current coordinates while

fi,J =
∂fi
∂Xj

(2.2)

ANL-21/33 3
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Figure 2.1: Reference frames used in deriving the kernel formulations.

denotes a gradient with respect to the reference coordinates. Figure 2.1 describes these two
frames of reference.

2.1.1 Total Lagrangian theory

The total Lagrangian theory enforces the equilibrium condition mapped back to the reference
configuration, weakly solving the differential equation:

PiJ,J + bi = 0 on Ω0 (2.3)

PiJNj = t̂i on ∂Ω0,n (2.4)

ui = ûi on ∂Ω0,e (2.5)

where PiJ is the 1st Piola-Kirchhoff stress, bi are the body forces in the updated configu-
ration, Nj are the boundary normals in the reference configuration, t̂i are the tractions in
the updated configuration, ui is the displacement field, and ûi are imposed displacement
boundary conditions.

This strong differential equation transforms to the weak residual

Rα =

∫
V

PiKφ
α
i,KdV (2.6)

with the corresponding Jacobian

Jαβ =

∫
V

φαi,JT
′
iJkLG

β
kLdV (2.7)

where PiK is the first Piola-Kirchhoff stress,

T ′iJkL =
dPiJ
dFkL

(2.8)

φαi,J are the test function gradients (with respect to the reference coordinates) and

Gβ
iJ =

dFiJ
dΥβ

(2.9)
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with Υβ the discrete (nodal) displacements. For the unstabilized case

Gβ
ij = ψβi,J (2.10)

with ψβi,J the trial function gradients with respect to the reference coordinates.

2.1.2 Updated Lagrangian theory

The updated Lagrangian theory enforces the equilibrium condition on the current configu-
ration:

σij,j + bi = 0 on Ω (2.11)

σijnj = t̂ion ∂Ωn (2.12)

ui = ûi on ∂Ωe (2.13)

where σij is the Cauchy stress.

For large deformation kinematics the weak form is

Rα =

∫
v

σikφ
α
i,kdv (2.14)

with the corresponding Jacobian

Jαβ =

∫
v

{
Tijklφ

α
i,jfkmg

β
ml + σij

(
φαk,kψ

β
ij − φαk,jψ

β
ik

)}
dv (2.15)

where σik is the Cauchy stress,

Tijkl =
∂σij
∂∆lkl

(2.16)

with

∆lkl = ∆FkMF
−1
Ml (2.17)

the incremental spatial velocity gradient, φαi,j are the test function gradients (with respect
to the current coordinates) and

gβij =
dFiK
dΥβ

F−1
Kj (2.18)

with Υβ the discrete (nodal) displacements. For the unstabilized case

gβij = ψβi,j (2.19)

with ψβi,j the trial function gradients with respect to the current coordinates.
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2.1.2.1 Small deformation theory

For small deformations both the updated and total Lagrangian formulation degenerate to
the same mathematical system:

sij,j + bi = 0 on Ω (2.20)

sijnj = t̂ion ∂Ωn (2.21)

ui = ûi on ∂Ωe (2.22)

where sij is the small (engineering) stress and there is now no difference between the current
and reference configurations.

The residual and Jacobian degenerate to

Rα =

∫
v

sijφ
α
i,jdv (2.23)

and

Jαβ =

∫
V

φαi,jCijklg
β
kldV (2.24)

for the small deformation case, with sij the small stress,

Cijkl =
∂sij
∂εkl

(2.25)

with εkl the small strain and
gβkl = ψβk,l (2.26)

for the unstabilized case.

2.1.2.2 Discussion on the kernel formulations

It is more natural and common to define the constitutive response for the total Lagrangian
formulation as the 1st Piola Kirchhoff stress as a function of the deformation gradient,
PiJ (FkL) updated Lagrangian formulation as the Cauchy stress as a function of the defor-
mation gradient, σij (FkL), with the deformation gradient defined as

FiJ = δi,J + ui,J (2.27)

with δ the Kronecker Delta. However, the Cauchy stress and the 1st Piola Kirchhoff stress
are related

PiK = JσijF
−1
Kj (2.28)

and so it is possible to convert a native Cauchy stress constitutive model to the 1st Piola-
Kirchhoff stress and vice versa.

If the boundary conditions, body force, and constitutive model are all identical then the
updated and total Lagrangian formulations will return exactly the same results. There is no
difference in the final results when using a updated Lagrangian or total Lagrangian model.

However, at times one formulation may be more convenient than another. For example,
the homogenization system system only works with the total Lagrangian kernel because of
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the difficulty in including the extra homogenization field in the kinematic spatial derivatives.
The current MOOSE Tensor Mechanics system uses an updated Lagrangian formulation and
so new system also includes both theories for backward compatibility.

In theory it can be more efficient to couple a “native” Cauchy stress constitutive model
to the updated Lagrangian configuration and a “native” 1st Piola-Kirchhoff model to the
total Lagrangian configuration. However, the currently-implemented material system always
coverts Cauchy stress to 1st Piola-Kirchhoff stress and vice-versa so that models can be used
with either the updated or total Lagrangian kernels.

2.2 Material system

The material system for the new solid mechanics system consists of:

1. A strain calculator to provide basic kinematic quantities for mapping configurations in
the kernel and defining the stress update.

2. A stress update object, which in the end must provide both the Cauchy and 1st Piola
Kirchhoff stress measures along with the associated algorithmic tangents

3. Optionally, additional material objects part of the homogenization system.

The objective of these objects is to provide the stress update needed by both the updated
and total Lagrangian formulation kernels. However, the user only needs to define the “main”
stress measure and an associated derivative, listed in Table 2.2 below. The base class code
then takes care of translating that stress and associated derivative into the “missing” stress
and derivative.

2.2.1 Kinematics

It does not matter which kinematic quantities the user elects to use in the defining the
stress update model, so long as the model returns the correct stress measure and associated
derivative. Table 2.1 lists the basic kinematic tensors provided by the material system.
Some of the stress update model base class options provide additional kinematic measures,
described in Table 2.2.

The strain calculator also subtracts any eigenstrain increments from the total strain incre-
ment to define the mechanical strain. Furthermore, it adds in the extra gradient associated
with the homogenization system, described below.

The strain calculator uses the spatial velocity gradient, defined as:

∆lij = δij − f−1
ij (2.29)

for large deformations and

∆lij = F
(new)
ij − F (old)

ij (2.30)

for small deformations, to define the incremental strains. Table 2.1 provides the definition
of the other standard kinematic variables.

ANL-21/33 7
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Table 2.1: Basic kinematic measure provided by the material system.

Quantity name Definition, large kinematics Definition, small kinematics

Deformation gradient FiJ = δiJ + ∂ui
∂XJ

Fij = δij + ∂ui
∂xj

Inverse deformation gradient F−1
Ji δji

Inverse incremental deformation gradient f−1
ij = F

(old)
iK F

(new)−1
Kj fij = δij

Volume change J = detF J = 1
Total strain increment ∆dij = 1

2
(lij + lji) Same

Mechanical strain increment ∆εij = ∆dij −∆ε
(eigen)
ij Same

Total strain d
(new)
ij = d

(old)
ij + ∆dij Same

Mechanical strain εij = ε
(old)
ij + ∆εij Same

Table 2.2: Options for implementing new material models

Description Extra kinematic tensors Stress measure Required Jacobian

Cauchy stress material None Cauchy stress σij
dσij
d∆lkl

1st Piola-Kirchhoff stress
material

None 1st Piola-Kirchhoff
stress PiJ

dPiJ

dFkL

2nd Piola-Kirchhoff stress
material

Green-Lagrange strain
EIJ = 1

2
(FkIFkJ − δIJ)

2nd Piola-Kirchhoff
stress SIJ

dSIJ

dEIJ

Engineering stress model None Engineering small
stress sij

dsij
dεkl

2.2.2 Stress update options

Table 2.2 lists the base classes available for implementing constitutive models. The table
also describes any extra kinematic measures provided by the base class, and the stress and
algorithmic tangent (Jacobian) tensors the user needs to implement to define the model. The
subsequent subsections provide the mathematical theory used to connect the user-defined
stress and tangent measure to the Cauchy stress, 1st Piola-Kirchhoff stress, and the associ-
ated tangent measures.

2.2.2.1 Cauchy stress material

This model converts the Cauchy stress and the algorithmic tangent to provide the 1st Piola
Kirchhoff stress, where needed by the Lagrangian kernel system. The conversion formula
are:

σij =
1

J
PiKFjK (2.31)

and

Tijkl =
dσij
d∆lkl

=
1

J
T ′iAmNFjAFlNfmk + fjkσil − σijflk (2.32)

ANL-21/33 8
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2.2.2.2 1st Piola-Kirchhoff stress material

This model converts the 1st Piola Kirchhoff stress and the algorithmic tangent to provide
the Cauchy stress, where needed by the Lagrangian kernel system. The conversion formula
are

PiJ = JσisF
−1
Js (2.33)

and
T ′iJkL = Jσim

(
F−1
Lk F

−1
Jm − F

−1
Jk F

−1
Lm

)
+ JTisabf

−1
ak F

−1
Lb F

−1
Js (2.34)

2.2.2.3 2nd Piola-Kirchhoff stress material

The model maps from the 2nd Piola Kirchhoff stress to the 1st Piola Kirchhoff stress (and
similarly maps the tangents). The formula above can then be used to convert to the Cauchy
stress. The conversion formula are

PiJ = FiKSKJ (2.35)

and

T ′iJkL = δikSLJ + FiTT
′′
TJMN

1

2
(δMLFkN + FkMδNL) (2.36)

2.2.2.4 Engineering (small) stress material

This model is a bit different from the other constitutive model options. It provides an inter-
face for implementing a constitutive model using the traditional small deformation, engineer-
ing stress and strain measures that translates this natively small deformations constitutive
model to provide a suitable response for a large deformation formulation, as implemented in
the updated and total Lagrangian kernels. Specifically, the class provides a way to calculate
the Cauchy stress given the small, engineering stress and to convert the algorithmic tan-
gent provided by an engineering stress/strain model to a suitable large deformation tangent
tensor.

The user then implements the small stress update sij and the associated derivative with
respect to the engineering strain

T̂ijkl =
dsij
dεkl

(2.37)

The class then converts these measures to the updated Cauchy stress. The conversion formula
above can then convert to the first Piola-Kirchhoff stress for the total Lagrangian formulation.

The class converts the small strain model by integrating an objective rate of the Cauchy
stress [7]. There are a wide variety of objective rates described in the literature and the
implementation in the Tensor Mechanics module provides a general form in which different
rates can be implemented. The current implementation provides two options: the Truesdell
rate of the Cauchy stress and the Jaumann rate of the Cauchy stress. The implicit version of
the commercial ABAQUS FEA code uses the Jaumann rate, so enabling this option allows
users to compare results to that product.

The process starts by updating the small stress using the user-provided constitutive
model, defined (typically) in terms of the mechanical strain tensor. However, as with all
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constitutive models designed for use with the Lagrangian kernels, the user can define the
stress update in terms of any kinematic measure.

Most objective rates take the form

σ̂ij = sij = σ̇ij −Qikσkj − σikQjk +Qkkσij (2.38)

where Qik is some kinematic measure and sij is the small stress, supplied by the constitutive
model. This equation basically advects the stress using the kinematic tensor. The σ̂ij
suggests that multiple objective rates of the Cauchy stress are possible – i.e. there is no
unique, universally accepted theory. The choice of the kinematic tensor Qik defines the
particular objective rate, so long as the model returns the correct tangent matrix T̂ijkl.

The conversion process must solve this equation to find the updated Cauchy stress for
an arbitrary kinematic measure Q. It turns out this update is linear and the solution for the
updated Cauchy stress is

σij = J−1
ijmn (σnmn + ∆smn) (2.39)

where ∆smn is the increment in the small stress over some time step and

Jijmn = (1 + ∆Qkk) δimδjn −∆Qimδjn − δim∆Qjn (2.40)

with ∆Qij = ∆tQij, i.e. the increment in the kinematic tensor.
The algorithmic tangent for the Cauchy stress is then given by

Tijkl = J−1
ijmn

(
T̂mnst −

∂Jmnst
∂∆lkl

σst

)
(2.41)

where the ∂Jmnst

∂∆lkl
tensor is another characteristic of the objective rate. Rather than implement

a 6th order tensor, the class instead implements a function giving the action of this tensor
on the Cauchy stress, i.e.

Umnkl =
∂Jmnst
∂∆lkl

σst (2.42)

The two tensors Qij and Uijkl then fully-define a particular objective rate.
The current implementation provides two objective rate options.

The Truesdell rate of the Cauchy stress The Truesdell objective rate is defined by the kine-
matic tensor

Qik = lik (2.43)

and the derivative tensor

Umnkl = δklσmn − δmkσln − δnkσml (2.44)

The Jaumann rate of the Cauchy stress The Jaumann objective rate is defined by

Qik = wik (2.45)

with

wik =
1

2
(lik − lki) (2.46)

and the associated derivative tensor

Umnkl =
1

2
(δmlσkn + δnlσmk − δmkσln − δnkσml) (2.47)
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Figure 2.2: Plot of σyy and σzz in the cube as it rotates, for different numbers of time steps.

Problems with objective rates There are several well-known problems associated with in-
tegrating objective rates to provide large deformation constitutive models based on small
strain theory [7, 8].

A typical use for objective rate integration is to provide a constitutive model for materials
that only undergo relatively small stretches in a simulation that will require large rotations.
For example, a user might want to simulate a cold work forming process for a metal part,
where the material will not under large strains but will undergo large rotations. One chal-
lenge with objective rate integration as implemented here is that the rotation kinematics
are integrated in time, rather than being applied directly from the simulation kinematics.
This means that the models will accurately capture large rotations but only in the limit of
zero time integration error. In theory then, the rotational kinematics are only correct for
infinitesimal time steps.

A simple example illustrates the problem: a block of material is stretched, developing
some stress, and then rotated 90◦. A correct simulation of this process would first develop
stress in the z-direction and then keep the magnitude of the stress constant as the block
of material rotates. Figure 2.2 shows the zz and yy components of the Cauchy stress, as
integrated for an elastic material with the Truesdell rate, during this process for different
numbers of integration time steps during the rotational part of the deformation. For large
numbers of time steps the simulation results are correct: the yy component of the Cauchy
stress at the end of the simulation is equal to the initial zz stress and the zz component
goes to zero as the block rotates. But for fewer steps the rotational process is not integrated
exactly, leading to errors in the final stress tensor.

This 90◦ rotation without additional stretch is not a typical simulation. More often, a
simulation would be deforming the material during the large rotations, which in turn re-
quires a smaller time step to accurately resolve the material deformation itself. However,
this example does illustrate one of the shortcomings of this particular implementation of
objective integration. Note this is not a generic shortcoming of objective rates, other inte-
gration approaches can achieve exact rotational kinematics regardless of the time increment,
including one of the options in the base tensor mechanics kernels [9].
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Figure 2.3: Shear stress/shear strain plot comparing the Truesdell and Jaumann rates for
very large shear deformations.

Models may exhibit anomalous, unphysical behavior when subjected to large shear de-
formations. Figure 2.3 compares the results of shearing a block of material to very large
shear strains using both the Truesdell and Jaumann rates. The shear stress/strain response
for the Jaumann model oscillates, which is not a reasonable, physical response for the elastic
material. The Truesdell rate, which is used by default by the new mechanics models, avoids
this non-physical behavior.

2.3 F̄ stabilization

2.3.1 The need for stabilization

Standard 2D and 3D finite elements using a linear interpolation of the displacement field are
not stable for incompressible and nearly incompressible deformation [10]. These standard
elements include the triangle, tetrahedral, quadrilateral, and hexahedral elements commonly
used in solving problems in the Tensor Mechanics module. Incompressible deformation is
material deformation that does not change the local volume of the structure, for example
linear elastic deformation as the Poisson’s ratio approaches ν = 0.5. Other common examples
include problems representing elastic-plastic materials problems with widespread plasticity,
as (traditional) plasticity occurs via shear, as well as many types of hyperelastic models
representing soft polymers.

Under these conditions standard linear elements exhibit volumetric locking where the
apparent, numerical stiffness of the element is much greater than the actual analytic stiffness
of the structure. This locking leads to inaccurate results which do not improve with mesh
refinement.

2.3.2 F̄ and B̄ Stabilization

There are two common methods used to stabilize linear elements and avoid volumetric lock-
ing: the F̄ [11] and B̄ [12]. Of these theories B̄ is older and was originally developed for
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small deformation problems while F̄ was developed later and originally intended for large
deformation problems. However, the F̄ method can be used for small deformation problems
as well, B̄ can be extended to large deformation problems, and the F̄ method can be viewed
as a subset of the B̄ theory. The following explains the two approaches in the context of
small deformations.

F̄ alters the definition of the strain being fed into the constitutive models to produce
the stress, subsequently used by the kernel to calculate the stress equilibrium residual. The
theory modifies the strains so that the dilitational part of the strain at each quadrature point
is set equal to the volume-average dilitation strain. Mathematically,

ε̄ij =
1

v

∫
v

εijdv (2.48)

ε′ij = εij +
1

3
(ε̄kk − εkk) δij (2.49)

where εij is the strain calculated from the displacement gradient. This method then stabilizes
the problem by replacing the linear-varying dilitational strain with a constant dilitational
strain over each element. Notionally, in MOOSE the F̄ only alters the material model,
though in fact it also changes the definition of the Jacobian (but not the residual) in the
kernel.

B̄ makes this modification to the strain but then also modifies the definition of the
residual, replacing the original small deformation stress equilibrium weak form

Rα =

∫
v

sijφ
α
i,jdv (2.50)

with a modified version

Rα =

∫
v

sijφ
′α
i,jdv (2.51)

where the method modifies the trial function gradient φαi,j in exactly the same way as the
strains:

φ̄αi,j =
1

v

∫
v

φαi,jdv (2.52)

φ′αi,j = φi,j +
1

3

(
φ̄αk,k − φ′αk,k

)
δij. (2.53)

The B̄ modification results in a symmetric Jacobian (assuming that the original problem
had a symmetric Jacobian). This is a significant advantage for codes taking advantage of the
symmetry of the assembled Jacobian matrix. However, MOOSE does not take advantage
of this symmetry and so the Lagrangian kernel system implements the F̄ method, as it is
somewhat easier to derive and implement in the large deformation context.

2.3.3 Implementation of the F̄ method

The form of the stabilization depends on if the problem is using large or small displacement
kinematic theory, For small displacements the strain calculator modifies the strains in the
manner described in the previous subsection:

ε̄ij =
1

v

∫
v

εijdv (2.54)
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ε′ij = εij +
1

3
(ε̄kk − εkk) δij (2.55)

For large displacements the strain calculator modifies the deformation gradient instead:

F̄iJ =
1

V

∫
V

FiJdV (2.56)

F ′iJ =

(
det F̄

detF

)1/3

FiJ . (2.57)

From here the stress update proceeds the same as with stabilization off, except the stress
is now based on the modified strain value. The F̄ approach does not alter the weak form
residual in the kernel. However, this change in the definition of the strain does affect the
Jacobian calculated in the kernel.

2.3.4 Cook’s membrane

Figure 2.4 shows Cook’s Membrane, a classical problem for demonstrating volumetric locking
and assessing stabilization techniques for overcoming it. When this problem is solved with a
nearly a incompressible material it induces locking in unstabilized, linear, Q4 quad elements.
Figures 2.5 and 2.6 show the problem solved twice, first with small deformation kinematics
and a linear elastic material defined by E = 250 and ν = 0.4999999 and then again with
large deformation kinematics and a Neohookean material with λ = 416666611.0991259 and
µ = 8300.33333888888926. Each plot shows the displacement at the tip of the beam as a
function of mesh refinement

These plots demonstrate:

1. The problem with locking in both large and small deformations for unstabilized, linear
elements. The beam tip displacement is much smaller in the unstabilized problems
compared to the true solution and the stabilized solutions (i.e. these elements are very
stiff). Moreover, mesh refinement is not effective at resolving the issue.

2. The F̄ stabilization implemented in the Lagrangian kernel system effectively eliminates
volumetric locking for both the updated and total Lagrangian formulations and for both
small and large deformations. The stabilized solutions for each kernel type are identical,
they demonstrate the proper, non-locking stiffness, and mesh refinement converges the
problem to a stable solution.

2.4 Homogenization subsystem

The new mechanics system integrates into a subsystem for imposing cell-average strain or
stress constraints over periodic simulation domains. Our previous report [1] describes the
system in detail. This section summarizes the theory and its implementation into the new
mechanics system.
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Figure 2.4: Cook’s membrane: a reference problem for testing locking and stabilization
strategies.

Figure 2.5: Demonstration of F̄ stabilization on a small deformation problem.
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Figure 2.6: Demonstration of F̄ stabilization on a large deformation problem.

2.4.1 Mathematical description

Danielsson et al. [13] describes the theory underlying the homogenization system. The
system aims to impose cell average stress or deformation constraints. For small deformations
these constraints are of the type

ŝij =
1

V

∫
v

sijdV (2.58)

or

ε̂ij =
1

V

∫
V

εijdV (2.59)

and for large deformations the constraint options are:

P̂iJ =
1

V

∫
V

PiJdV (2.60)

or

F̂iJ − δiJ =
1

V

∫
V

(FiJ − δiJ) dV. (2.61)

The “hat” quantities are targets set by the user with a MOOSE function. These targets
control the cell-average stress or strain. For large deformations the system imposes the
constraints on the 1st Piola-Kirchhoff stress or the displacement gradient. For small defor-
mations the system constrains the small stress or the small strain.

Components can be mixed and matched – the system can impose deformation constraints
in one tensor direction and stress constrains in the others. The number of available con-
straints varies by the problem dimension and the kinematic theory.

2.4.2 Example simulation

Figure 2.7 shows a simple, but representative, sample simulation. It consists of a square, 2D
simulation cell subdivided into four subdomain. The material model in each subdomain is
a St. Venant-Kirchhoff model, but the material properties in each subdomain are different
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Figure 2.7: Simple, 2D large deformation homogenization cell problem.

Figure 2.8: Results showing that the controlled deformation values match their targets.

as indicated on the figure. The problem imposes a combination of deformation gradient and
1st Piola Kirchhoff constraints on the simulation cell.

Figures 2.8 and 2.9 illustrate that the cell average stress and strain match the constraints
for the controlled components of the 1st Piola-Kirchhoff and deformation gradient tensor.
The uncontrolled components can vary to maintain equilibrium in the body. Because each
subdomain has different material properties the microdisplacements are not homogeneous,
producing an inhomogeneous stress state in the simulation cell.
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Figure 2.9: Results showing that the controlled stress values match their targets.
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3 Integrating the Interface-Cohesive System into MOOSE

This chapter describes the integration of an interface-cohesive modeling framework, long
under developed at ANL, into mainline MOOSE. As with the solids system, this ended up
requiring substantial new, additional work both to integrate the existing material system and
fundemental changes in the underlying kinematic formulation to improve the performance
of the final models. The new implementation of the cohesive zone modeling framework in
MOOSE has the following improvements compared its predecessor:

• it is modular, thus allowing for an easy implementation of additional traction-separation
constitutive models,

• it supports both small strain and and large strain formulations,

• it allows using total and total and incremental constitutive traction separation laws
for all kinematics formulations,

• it provides the exact Jacobian,

• the new CohesiveZoneMaster action simplies the output syntax (same as the current
TensorMechanicsMaster action), and

• the total Lagrangian formulation is objective, and does not suffer from numerical in-
tegration error (i.e. for an elastic material it does not dissipates energy even for very
large deformations)

The implemented framework uses four kinds of objects to build the cohesive zone mod-
eling system:

1. a displacement jump calculator,

2. a global traction calculator,

3. one, two, or three cohesive interface kernels (one for each problem dimension), and

4. a traction separation constitutive model.

Displacement jump calculators are responsible for providing the displacement jump in
interface coordinates, JûK, and are implemented inheriting from CZMComputeDisplacem-
netJumpBase. The global traction calculator objects compute the traction used to impose
equilibrium, t, and its derivatives with respect to kinematic variables, ∂ti/∂JuKj and ∂ti/∂Fjk.
These objects inherit from CZMComputeGlobalTractionBase. Each cohesive interface ker-
nels computes the residual R±i associated to the displacement component i and adds it to
the equation system. This type of kernels also assembles the Jacobian, ∂Ri

∂u±j
, and should

be implemented inheriting from CZMInterfaceKernelBase. The CohesizeZoneMaster ac-
tion simplifies the input file syntax by adding the proper CZMComputeDisplacemnetJump,
CZMComputeGlobalTraction, and CZMInterfaceKernels. The user is only responsible for
adding the proper CZMComputeLocalTraction material in the input file material section.
The schematic in Figure 3.1 depicts the flow of information between the different objects
and highlights the objects automatically added by the action.
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Figure 3.1: Schematic depicting the objects required for cohesive zone modeling in MOOSE,
and the objects automatically added by the CohesizeZoneMaster action

Traction separation constitutive models are implemented using a small deformation for-
mulation. The system applies a kinematic update to this base model to accomodate large
deformation problems. The framework provides two base classes for implementing traction
separation laws:

1. CZMComputeLocalTractionTotalBase, and

2. lightgrayCZMComputeLocalTractionIncrementalBase.

The total formulation assumes the interface traction is only function of the total displace-
ment jump, i.e. t̂ = f(JuK), and can be used to implement traction separation laws without
damage, such as the model described in [14] and [15]. The incremental formulation assumes
the traction rate depends upon the displacement jump increment and the values of one or
more internal variables, i.e. ∆t = f(J∆uK, h). Thus, the incremental formulation should be
used for path dependent traction separation laws, such as the numerical implementation of
the PPR model described in [16].

When implementing a new traction separation law the user should override the com-
puteInterfaceTractionAndDerivatives. For the total formulation, the user provides the in-
terface traction and its derivatives with respect to the interface displacement jump, and
saves them into interface traction[ qp] and dinterface traction djump[ qp] variables, re-
spectively. For the incremental formulation, the user provides the interface traction in-
crement and its derivatives w.r.t. to the interface displacement jump, and saves them into
interface traction inc[ qp] and dinterface traction djump[ qp] variables, respectively. Fur-

thermore, the total interface traction is automatically calculated as t̂ = ∆t̂+ t̂old.
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3.1 Large deformation Cohesive zone modeling approach

3.1.1 The interface deformation gradient

The MOOSE framework does not support standard interface elements, therefore it is not
possible to directly calculate the deformation gradient on the interface midplane, F . Knowing
F is critical because the interface coordinate system is attached to the interface midplane and
most, if not all, traction separation laws are written in terms of the normal and tangential
displacement jump components. Furthermore knowing F also allows the interface system
to push forward or pull backward the traction between two configurations. Figure 3.2 is
a schematic depicting the two surfaces defining the cohesive interfaces and the interface
midplane, their deformation gradient, and the interface coordinate system in the deformed
and undeformed configurations.

Figure 3.2: Schematic showing the bulk material surfaces (blue lines) and the interface mid-
plane (dashed black lines) in the deformed and undeformed configuration and the associated
deformation gradients. The figure also shows how the interface coordinate system evolves
according to the deformation of interface midplane (green arrows) Note: in the undeformed
configuration all surfaces coincide, however they are shown separated for clarity.

The MOOSE framework provides additional quadrature points on the bulk element sur-
faces, allowing the calculation of the deformation gradient of the cohesive surfaces. Therefore
we assume the interface midplane deformation gradient, F , to be defined as the average de-
formation gradient of the initially coincident quadrature points:

F =
1

2

(
F+ + F−

)
(3.1)

where the superscripts + and − identify the two initially coincident surfaces.
The InterfaceKernel system available in MOOSE assumes elements are connected, thus

implying the two sides of the interface always a have the same area. In the deformed
configuration the cohesive surfaces might have different areas, however in the undeformed
configuration all surfaces are coincident. Therefore we elected to design the large deformation
cohesive zone model using a total Lagrangian formulation, which impose equilibrium in the
undeformed configuration.

In this manuscript, and also in the implementation, we define the normal cohesive trac-
tion to be positive when the normal displacement jump is positive. Since the MOOSE
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InterfaceKernel provides the outward normal of the + surface, we define the displacement
jump as

JuK = u− − u+ (3.2)

Equation 3.2 provides a positive value for the normal jump when the cohesive surfaces are
opening. In the same equation we also introduced the jump operator which is defined as
JxK = x− − x+ where x can be a scalar, a vector, or a tensor.

3.1.2 Interface Coordinate Systems

The interface coordinate system is attached to the interface midplane and rotates with
the material deformation and rigid body rotations. Displacements are always expressed in
the global coordinate system, therefore a map transforming between the two coordinate
systems is required to compute the normal and tangent component of the displacement
jump. Under the small strain assumption, the interface rotation and area change are ignored.
Hence, the mapping is the rotation matrix transforming from the interface coordinate system
to the global coordinate system in the undeformed configuration. Assume N̂ , Ŝ1 and Ŝ2

are the normal and tangent unit vectors defining the interface coordinate system, and Q0

is the rotation matrix transforming the normal and tangential components from interface
coordinate system to the global coordinate system in the undeformed configuration:NS1

S2

 = Q0

N̂Ŝ1

Ŝ2

 (3.3)

Where N,S1 and S2 represent the interface normal and tangential vectors in global coordi-
nates, in the undeformed configuration.

Finite strain kinematics must account for interface rotation caused by the applied loads
and rigid body motion. We define R as the rotation transforming the interface normal and
tangential vector, from the undeformed to the deformed configuration: During deformation
N,S1 and S2 rotates according to the rotation R such thatns1

s2

 = R

NS1

S2

 (3.4)

Where n, s1 and s2 represent the interface normal and tangential vectors in the global coor-
dinates in the deformed configuration. Note that for the small strain assumption R is the
identity matrix.

By using Equations 3.3 and 3.4 one can relate the interface normal and tangential vectors
in the deformed configuration in global coordinates with the interface local coordinate system
as ns1

s2

 = Q

N̂Ŝ1

Ŝ2

 (3.5)

with Q defined as:
Q = RQ0 (3.6)

ANL-21/33 22



Initial framework for engineering-scale statistical creep-fatigue modeling
September 2021

The rotation matrix R is calculated computing the right polar decomposition of the interface
deformation gradient, i.e. assuming F = RU Figure 3.3 is a visual representation of the
coordinate transformation process described above.

Figure 3.3: a) Interface coordinate system, b) interface coordinate system in global coor-
dinates for the undeformed configuration, and c) the interface coordinate system in the
deformed configuration. Q0 is rotation matrix transforming from the interface coordinate
system to the global coordinate system in the undeformed configuration. The rotation ma-
trix R rotates a vector from the deformed to the undeformed configuration. The variables a
and A are the interface areas in the deformed and undeformed configuration, respectively.

To compute the analytic Jacobian, we will need the partial derivative of the rotation
matrix Q with respect to the deformation gradient Since Q = RQ0 and Q0 is constant then

∂Qij

∂Fpq
=
∂Rik

∂Fpq
Q0,kj (3.7)

Chen and Wheeler obtained the following analytic expression[17]:

∂Rkl

∂Fpq
=

1

det(Y )
Rkp (YpqRmqYnl − YpnRmqYql) (3.8)

where Y = trace(U)I − U

3.1.3 Total Lagrangian Residual

Linear momentum equilibrium requires the cohesive infinitesimal forces to be equal and
opposite:

df+ + df− = 0 (3.9)

In the undeformed configuration angular momentum is automatically satisfied because sur-
faces are coincident. The infinitesimal force is defined as the traction multiplied by the
infinitesimal area dS. Substituting the definition of infinitesimal forces in Equation 3.9 one
obtains

T−i dS− + T+
i dS+ = 0 (3.10)

where i = x, y, z is the index associated to a particular Cartesian component. Since cohesive
surfaces area coincident, their infinitesimal areas are identical and therefore cohesive traction
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are equal and opposite ( T+ = T− = T ). Realizing displacements are the work conjugate of
forces, the weak form of Equation 3.10 is

Tiψ
z,−
i dS = Tiψ

z,+
i dS (3.11)

where ψ(z,−) and ψ(z,+) are the test function of the + and − surfaces, and z is test function
index. Therefore the residuals for the + and − surfaces, for the test function z are

R+
i (z) = −Tiψ+,z

i (3.12)

R−i (z) = Tiψ
−,z
i (3.13)

In Equations 3.12 and 3.13 we dropped the dS dependency to highlight the residual imple-
mented in the CZMInterfaceKernelTotalLagrangian object.

3.1.3.1 Total Lagrangian Jacobian

To achieve quadratic convergence the Jacobian must be exact. The displacements on both
sides of the interface are the only variables involved in calculating the residual. In the
Galerkin method variables are discretized as follows

u ≈
∑
z

φkuz (3.14)

where z is the test function index, φz is the test function, and uz is the test function coeffi-
cient. Hence the analytic Jacobian with respect to the shape function coefficients is:

∂R+
i

∂u+,w
j

ψ+,z
i = − ∂Ti

∂u+,w
j

ψ+,z
i (3.15)

∂R+
i

∂u−,wj

ψ+,z
i = − ∂Ti

∂u−,wj

ψ+,z
i (3.16)

∂R−i
∂u+,w

j

ψ−,zi =
∂Ti

∂u+,w
j

ψ−,zi (3.17)

∂R−i
∂u−,wj

ψ−,zi =
∂Ti

∂u−,wj

ψ−,zi (3.18)

The first Piola-Kirchoff traction depends on the displacement jump JuK and other kine-
matic variables derived from the interface deformation gradient F . Hence the partial deriva-
tives of the traction with respect to the discrete displacements can be expanded using the
chain rule:

∂Ti
∂u+

j

=
∂Ti
∂JuKp

∂JuKp
∂u+,w

j

+
∂Ti

∂F̂pq

∂F̂pq

∂u+,w
j

(3.19)

∂Ti

∂u−,wj

=
∂Ti
∂JuKp

∂JuKp
∂u−,wj

+
∂Ti

∂F̂pq

∂F̂pq

∂u−,wj

(3.20)

ANL-21/33 24



Initial framework for engineering-scale statistical creep-fatigue modeling
September 2021

Using Equation 3.2 and 3.14 the derivatives of the jump with respect to the discrete
displacements are:

∂JuKp
∂u+,w

j

= −δijφ+,w
j (3.21)

∂JuKp
∂u−,wj

= δijφ
−,w
j (3.22)

The deformation gradient itself is defined as:

Fij = δij +∇uij = I +

 ∂u1
∂X1

∂u1
∂X2

∂u1
∂X3

∂u2
∂X1

∂u2
∂X2

∂u2
∂X3

∂u3
∂X1

∂u3
∂X2

∂u3
∂X3

 (3.23)

where X are coordinates in the reference configuration and I is the identity matrix. Recall-
ing that ∂ui/∂Xj =

∑
w∇φwijuwi , the derivative of Equation 3.1 with respect to the discrete

displacements are:

∂Fpq

∂u+,w
j

=
1

2



∇φ+,w
1,1 ∇φ+,w

1,2 ∇φ+,w
1,3

0 0 0
0 0 0


j=1 0 0 0

∇φ+,w
2,1 ∇φ+,w

2,2 ∇φ+,w
2,3

0 0 0


j=2 0 0 0

0 0 0
∇φ+,w

3,1 ∇φ+,w
3,2 ∇φ+,w

3,3


j=3



(3.24)

∂Fij

∂u−,wk

=
1

2



∇φ−,w1,1 ∇φ−,w1,2 ∇φ−,w1,3

0 0 0
0 0 0


j=1 0 0 0

∇φ−,w2,1 ∇φ−,w2,2 ∇φ−,w2,3

0 0 0


j=2 0 0 0

0 0 0
∇φ−,w3,1 ∇φ−,w3,2 ∇φ−,w3,3


j=3



(3.25)

The CZMInterfaceKernelTotalLagrangian object uses Equations 3.15-3.20 to calculate
the analytic Jacobian, and computes partial derivatives of JuK and F̂ . The partial derivative
of T are provided by the CZMComputeGlobalTractionTotalLagrangian object.
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Using a Total Lagrangian approach requires computing the first Piola-Kirchoff traction,
T , which is defined as the ratio between the infinitesimal force df and the undeformed area,
dA. The Cauchy traction t instead is the ratio between the infinitesimal force df and the
current infinitesimal area da. Using force equilibrium and the above definitions we can write

T =
da

dA
t (3.26)

Equation 3.26 also shows the Cauchy and first Piola-Kirchoff traction are collinear, and
scaled by the ratio between the current and undeformed areas.

3.2 The cohesive zone material system

3.2.1 Cohesive zone constitutive models

The system assumes traction separation constitutive models calculate the interface local
traction or its finite increment as function of the local displacement jump or its finite incre-
ment, i.e t̂ = f(JûK) or ∆t̂ = f(J∆ûK). Path dependent traction separation models can be
implemented overriding the CZMComputeLocalTractionTotalBase object, while path inde-
pendent models typically use the CZMComputeLocalTractionIncrementalBase object. Both
types of materials can be used for the small strain or large strain simulations.

The local displacement jump or its increment are provided using the following order
(N̂ , Ŝ1, Ŝ2). The same convention is used for the traction vectors.

In this objects the user should also provide the analytic Jacobian of the local traction,
or its increment, w.r.t. the total displacement jump. Notice that by construction ∂t̂/∂JuK =
∂∆t̂/∂J∆uK ) The convention used for the Jacobian assumes a row major order:

∂t̂

∂JuK
=


∂t̂N
∂JuKN̂

∂t̂N
∂JuKŜ1

∂t̂N
∂JuKŜ2

∂t̂Ŝ1

∂JuKN̂

∂t̂Ŝ1

∂JuKŜ1

∂t̂Ŝ1

∂JuKŜ2
∂t̂Ŝ2

∂JuKN̂

∂t̂Ŝ2

∂JuKŜ1

∂t̂Ŝ2

∂JuKŜ2

 (3.27)

3.2.2 The displacement jump provider

The new cohesive zone system provides two objects: ComputeDisplacementJumpSmallStrain,
and ComputeDisplacementJumpFiniteStrain.

The first object computes the interface displacement jump as:

JûK = QT
0 JuK. (3.28)

The ComputeDisplacementJumpFiniteStrain object is also responsible for computing the
interface deformation gradient F and its polar decomposition because it needs the rotation
matrix R to properly compute the displacement jump in interface coordinates:

JûK = QT JuK (3.29)

where Q is the rotation matrix defined by Equation 3.6.
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3.3 Integral PK1 traction formulation

The first Piola-Kirchoff traction, T and the Cauchy traction, t are related by Equation 3.26
The material models provides the interface traction in the deformed configuration and can
be converted to the Cauchy traction t by the rotation matrix Q as follow:

t = Qt̂ (3.30)

Substituting Equation 3.30 in 3.26 we can write:

T =
da

dA
Qt̂ (3.31)

which relates the first Piola-Kirchoff traction to the interface traction directly. By manipu-
lating Nanson’s formula it can be show that the area ratio is:

da

dA
= det(F )‖F−Tij Nj‖2 (3.32)

3.3.1 Derivative of T with respect to the discrete displacements

As shown in section 3.1.3.1, computing the analytic Jacobian requires computing the deriva-
tive of the traction with respect to the discrete displacements. Equations 3.19 and 3.20
have two unknown terms: ∂Ti/∂JuKp and ∂Ti/∂Fpq. Using the chain rule and assuming only the
interface traction directly depends from the JuK the first term can be expanded as:

∂Ti
∂JuKp

=
da

dA
Qij

∂t̂j
∂JûKw

∂JûKw
∂JuKp

(3.33)

The derivative of the interface traction with respect to the interface displacement jump,
i.e ∂t̂i/∂JûKw is provided by the constitutive model. The second partial derivative instead
is computed using the definition of interface displacement jump (Equations 3.28 or 3.29).
Therefore

∂JûKw
∂JuKp

= QT
wp (3.34)

Equation 3.34 is valid for the both the total and incremental formulations, because ∂JûKold/∂JuK =
0. Substituting Equation 3.34 in Equation 3.33 we can write:

∂Ti
∂JuKp

=
da

dA
Qij

∂t̂i
∂JûKw

QT
wp (3.35)

which is the implemented equation.
Using the chain rule and Equation 3.31 , the partial derivative of T w.r.t. F reads:

∂Ti
∂Fpq

=

(
∂ da

dA

∂Fpq
Qij +

da

dA

∂Qij

∂Fpq

)
t̂j +

da

dA
Qij

∂t̂j
∂Fpq

(3.36)
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The derivative of the area ratio with respect to the interface deformation gradient is:

∂ da
dA

∂Fpq
= det(F )

(
F−Tpq ‖F−Tij Nj‖2 −

F−Tij Nj

‖F−Tij Nj‖2

F−Tip F−Tqr Nr

)
(3.37)

and the partial derivative of Q w.r.t. F is computed using Equation 3.7. Assuming the
interface traction is only function of the interface displacement jump, then its derivative
w.r.t F is:

∂t̂j
∂Fpq

=
∂t̂j
∂JûKv

∂JûKv
∂Fpq

(3.38)

By using equation 3.29 it can be shown that:

∂t̂j
∂Fpq

=
∂t̂j
∂JûKv

∂QT
vw

∂Fpq
JuKw (3.39)

Substituting Eq. 3.39 in Eq. 3.36 and rearranging provides:

∂Ti
∂Fpq

=
∂ da

dA

∂Fpq
Qij t̂j +

da

dA

(
∂Qij

∂Fpq
t̂j +Qij

∂t̂j
∂JûKv

∂QT
vw

∂Fpq
JuKw

)
(3.40)

The CZMGlobalTractionCalcualtorTotalLagrangian material computes the partial deriva-
tives of the traction using Equations 3.35, 3.37, 3.7, 3.8, and 3.40. Such derivatives are used
by the CZMInterfaceKernleTolalLagrangian to compute the exact Jacobian.

3.3.1.1 Testing

Figure 3.4 depict the resulting Cauchy and first Piola-Kirchoff traction components for a
stretch plus rotate test obtained using the large-deformation, integral, cohesive zone model
formulation for two cases:

1. using the total material formulation and and elastic traction separation law, i.e. t̂ =
KJûK, and

2. using the incremental material formulation and and elastic traction separation law, i.e.
∆t̂ = KJ∆ûK.

Lines and squares represents the first and second case, respectively. As expected the two
model produce the same results, the first Piola-Kirchoff traction increases linearly with
stretch, the Cacuhy traction accounts for the area changes, and the Cartesian components
of both traction exactly follow the rotation. The green, horizontal line represents the normal
magnitude of the Cauchy traction, which remains constant during rotation.

3.3.2 The small strain formulation

The small strain, formulation is identical to total Lagrangian formulation except the de-
formation gradient F is replaced with the identity matrix. Hence, all partial derivatives
with respect to F are zero, the area ratio is always 1, and the rotation matrix Q is equal
to Q0. To improve numerical efficiency for the small strain approach we implement three
additional objects: CZMDisplacementJumpSmallStrain, CZMComputeGlobalTractionSmall-
Strain, and the CZMInterfaceKernelSmallStrain which avoid explicitly calculating these zero
derivatives.
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Figure 3.4: Stretch (simulation time 0-1) plus rotation (90◦ around the y-axis, simulation
time 1-2 test using a linear traction separation law implemented using the total and incre-
mental formulation.
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4 Full-scale CPFEM Simulations of Cyclic Load

One goal of the work described here is to provide an ability for MOOSE to run full field
simulations of creep deformation and failure in components ore realistic models of test speci-
mens. To demonstrate this capability, crystal plasticity (CP) simulations were performed on
full-scale microstructures, under stress controlled loading conditions to model creep behav-
ior. Input microstructures with varying aspect ratios and geometries, with and without free
surfaces were used to study the effect of free surfaces on creep performance. The literature
lacks conclusive evidence to establish the effects of free surfaces on creep performance. The
present work addresses the above problem using CPFEM simulations on Grade 91 steel.

4.1 Microstructure and loading conditions

An example input microstructure is shown below in Figure 4.1 (a). This representative
cylindrical microstructure has a 1000 grains and approximately 1.5 M elements. The maxi-
mum simulation stress used was 100 MPa, which was ramped up to in the first 0.1 hrs, and
then held constant (creep load) for a maximum of 106hrs, as shown in Figure 4.1 (b). The
microstructure was loaded along the top face of the z-axis, with the bottom face was fixed.
The rest of the surfaces were free of constraints. The microstructure shown in Figure 4.1
(a) has an aspect ratio of ∼6; other microstructures with aspect ratios varying from 1 to
10 were also considered in this study. Also, cubic microstructures were simulated (with and
without free surfaces) to compare the creep response with the cylindrical microstructure.
The grain size was maintained consistent at 60 µm (consistent with experimental observa-
tions for Grade 91 steel), and the element sizes were maintained constant across the different
simulated microstructures. The constitutive model used for these simulations is the creep
model developed earlier in the group[6], where creep damage is modeled by means of grain
boundary cavitation mechanism. Finally, the NEML material model framework [18] was
used in conjunction with the MOOSE finite element solver [19] for the crystal plasticity
simulations.

The large scale of the simulation setup required the implementation of an updated mesh-
ing algorithm for better performance of the finite element simulations. A comparison of
the meshes resulting from the old and new methods are shown in Figure 4.2. Previously,
Gmsh [20] was used to mesh the microstructure, but as is seen in Figure 4.2 (a), Gmsh is
unable to handle efficiently the curvature of the cylindrical microstructure. Coreform Trelis
[21] was instead used to produce higher quality meshes as shown in Figure 4.2 (b). The
resulting mesh from Trelis provides more consistently shaped elements, which subsequently
helps finite element simulation convergence.
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(a) (b)

Figure 4.1: (a) A representative meshed microstructure used in the present work. This
microstructure has 1000 grains and ∼1.5 M elements. (b) Schematic of the creep loading
conditions applied on the microstructure. Maximum stress of 100 MPa was used across all
the simulations.
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(a) (b)

Figure 4.2: (a) Finite element mesh resulting from the old method using Gmsh and (b) mesh
resulting from the updated method (using Coreform Trelis).
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4.2 Results and Analysis

Many large scale microstructures were subjected to creep loading conditions to study the
effect of free surfaces. Figure 4.3 shows the various geometries used in the study. All the
microstructures were taken to tertiary creep, with the goal of identifying the effects of free
surfaces, role of curvature in the microstructure geometry and also to establish the role the
boundary conditions play in the strain partitioning. A summary of associated creep curves
are shown in Figure 4.4. An important observation here is the early onset of tertiary creep
stage in the cylinder geometry. It should be noted that “RVE” and “Cube” represent the cu-
bic microstructures, with block periodic boundary conditions and free surfaces, respectively.
The resulting strain distribution plot for the full cylinder microstructure is shown in Figure
4.5 (a). Also shown in Figure 4.5 (b) is the damage metric for the interfacial damage model
(D) in the grain boundary cavitation model, which is defined as the ratio between the cavity
half radius, a, and cavity half spacing, b:

D =
a

b
(4.1)

Further, the material parameters used for the crystal plasticity are shown in Table 4.1.
The parameters were described in more detail in an earlier report using this model [6].

Table 4.1: The material parameters used in the present simulations.

Symbol Description Value Units

E Young’s modulus 150,000 MPa
ν Poisson’s ration 0.285 unitless
τsat Isotropic saturation 12 MPa
τ0 Isotropic initial value 40 MPa
γ̇0 Reference slip rate 9.55× 10−8 unitless
n Flow exponent 12 unitless
β Slope of the sigmoid ramp 2 unitless
c Critical value of damage parameter 100 unitless

It is seen from the distribution of D in 4.5 (b) that there is no evidence of a clear
crack path through the microstructure resulting from the creep simulation. Instead, the
damage appears to be distributed across the microstructure somewhat homogeneously. This
observation is consistent across different microstructures.

Furthermore, the average Poisson’s ratio is compared for the different simulated geome-
tries in Figure 4.6. There is an observation of potentially two disparate mechanisms operating
between the different types of microstructures. Specifically, the cylinder microstructures tend
to have significantly larger values of average Poisson’s ratio in comparison with the cubic
geometries. This observation is further investigated in the next section.
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Figure 4.3: The geometries simulated in the present study: full cylinder, quarter cylinder,
cube, and cube geometries with larger aspect ratios.

Figure 4.4: A compilation of the creep curves for the different geometries simulated are
shown here. The cylinder microstructure reaches tertiary creep earlier than the cubic mi-
crostructure.
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(a) (b)

Figure 4.5: (a) The inelastic strain distribution at the end of the creep simulations in the
full cylinder microstructure. (b) The corresponding distribution of the damage metric D in
the cylinder microstructure.

Figure 4.6: Comparison of average Poisson’s ratio for the different simulated geometries.
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Figure 4.7: Comparison of the equivalent strains partitioned between the grain and grain
boundaries (GB) for the different microstructures simulated.

Strain Partitioning

The strain partitioning between (a) the grain interiors and the grain boundaries and (b)
grain boundary sliding and grain boundary cavitation/opening are compared in Figures 4.8,
4.9 and 4.10. It is again observed here that there might be two different active mechanisms
between the geometries with curvature (full cylinder and quarter cylinder microstructures)
and without curvature (cubic microstructures). Surprisingly, the boundary conditions do
not appear to be a significant contributor to these differences in strain partitioning.

Summary

This section demonstrates the capabilities for full-field simulations of creep and creep-fatigue
in MOOSE now available. This particular study focuses on the effect of the actual geometry
of a test sample or component versus the more conventional periodic representative volume
element cells often used in multiscale simulations of creep and fatigue processes. This study
should be seem as an example of the new capabilities now in the process of being merged
into the mainline MOOSE tensor mechanics module: the ability to run very large-scale
simulations representing complex microstructural processes over realistic volumes of material.
The new solid and interface mechanics kernels make simulations of this type possible.
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Figure 4.8: Comparison of the grain boundary sliding strains partitioned between the axial
and transverse directions for the different microstructures simulated.

Figure 4.9: Comparison of the grain boundary opening strains partitioned between the axial
and transverse directions for the different microstructures simulated.
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(a) (b)

Figure 4.10: (a) Homogenized strains (homogenized over the entire domain of the microstruc-
ture) partitioned between the grain and grain boundaries (GB) for the different microstruc-
tures simulated.

ANL-21/33 39





Initial framework for engineering-scale statistical creep-fatigue modeling
September 2021

5 Conclusions and Future Work

This report describes integrating new systems for solid and interface mechanics into MOOSE.
The solid mechanics systems rewrites much of the basic implementation of the tensor mechan-
ics module, providing a new kernel system with the goal of providing the exact Jacobian for
stabilized, large-deformation solid mechanics simulations. This improvement in turn reduces
the amount of time required to run large scale, large deformation simulations, for exam-
ple crystal plasticity simulations of high temperature materials, by reducing the number of
required nonlinear iterations required to find accurate, converged solutions.

The new interface-cohesive formulation provides the ability to insert interface material
models along 2D interfaces in 3D models (or 1D interfaces in 2D models or 0D interfaces in
1D models). These types of models can be used to represent variety of material interface
mechanics, including degradation and failure caused by creep cavitation on grain boundaries
in crystal plasticity simulations.

Several components of these new frameworks were developed in previous MOOSE Apps.
This report describes their integration to the main MOOSE framework, as well as several
improvements beyond past work aimed at improvement the numerical performance of the
systems and their ease of use:

• A new material system with interfaces for implementing a wide variety of solid me-
chanics constitutive models. This new system is compatible with the new solid me-
chanics kernels but also provide a means, via objective stress integration, to tie existing
MOOSE material models into the new mechanics system.

• Intercompatible updated and total Lagrangian solid mechanics formulations.

• Stabilization for linear hexahedral elements for nearly-incompressible problems, includ-
ing the exact linearization for large deformations.

• A new kinematic formulation for the interface model system that improves the perfor-
mance of models for situations where interfaces undergo large rotations.

• A common interface material system with options for history independent and incre-
mental, history-dependent models.

We have proposed both the solid mechanics and interface mechanics systems for incor-
poration into mainline MOOSE through two pull requests – #17475 for the solid mechanics
system and #17157 for the interface-cohesive system. At the time of writing both pull re-
quests are under review, but we hope to have both merged into mainline MOOSE before the
publication of this report.

There is some work left to complete for the new solid mechanics system, specifically:

• The addition of axisymmetric and spherical version of the kernel, so that it can com-
pletely replace the existing tensor mechanics kernels.

• Integration of the current MOOSE material system with the new kernels, via the
objective integration/small strain model

• Integration or reimplementation of the generalized plane strain capability.
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The last of these items can be easily accomplished using the homogenization strain system –
it is in effect a specialized constraint of this type. None of these deficiencies in the new tensor
mechanics system are critical – as demonstrated here, the current framework is sufficient to
run the problems of interest.

Beyond this reintegration work, a few additional features would make running large scale
CPFEM calculations easier or faster:

• Stabilization for linear tetrahedral elements. Most complex microstructures require tet
meshes. Currently we use second order, quadratic elements to avoid locking. Stabilized
linear tets would allow us to resolve geometric features at reduced computational cost,
enabling larger-scale simulations.

• Improvements to the parallel scaling of the linear solver (HYPRE/BoomerAMG for
large problems). Currently, the size of the CPFEM simulation is limited by the scaling
of the linear solver. Long term, this is the critical issues to address in representing
larger simulation volumes.
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